Comparison of methods of feature generation for face recognition
نویسندگان
چکیده
The paper is concerned with the recognition of faces at application of different methods of global feature generation. We check the selected choice of transformations of images, leading to the numerical representation of the face image. The investigated approaches include the linear and nonlinear methods of transformation: principal component analysis (PCA), Kernel PCA, Fisher linear discriminant analysis (FLD), Sammon transformation and stochastic neighbor embedding with t-distribution (tSNE). The representation of the image in the form of limited number of main components of transformation is put to the input of support vector machine classifier (SVM). The numerical results of experiments are presented and discussed. Streszczenie Praca przedstawia analizę porównawczą różnych metod wstępnego przetwarzania obrazów twarzy dla wygenerowania cech diagnostycznych zastosowanych w klasyfikacji. W badaniach uwzględniono metodę transformacji PCA, KPCA, FLD, transformację nieliniową Sammona oraz transformację tSNE. Cechy wygenerowane przy użyciu tych metod stanowią sygnały wejściowe dla klasyfikatora SVM dokonującego ostatecznego rozpoznania. W pracy pokazano i przedyskutowano wyniki przeprowadzonych eksperymentów rozpoznania twarzy przy uwzględnieniu zmiennej liczby cech dla różnej liczby klas. (Porównanie metod generacji cech dla rozpoznawania twarzy)
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کامل